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a b s t r a c t

This paper aims at investigating the effect of thermal stress on free linear vibrations

of cables. An analytical model extending Irvine’s theory to thermoelasticity is proposed.

In addition to the sag-extensibility parameter, this model yields a second dimensionless

independent parameter related to the temperature change. Some general two-dimensional

contour plots are presented giving the relative change in natural frequencies due to

temperature with respect to the only two independent parameters of the problem.

Depending on their values, this change can be quite significant. For in-plane symmetric

modes, it is shown that a positive (resp. negative) temperature change does not necessarily

decrease (resp. increase) natural frequencies and that thermoelastic effects can lead to

cross-over due to the modification of the initial sag.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cables are widely used in modern structures (bridges, post-tensioned concrete, suspended roofs, skilifts, elevators).
The study of their vibrations has a long history, since the eighteenth century (see Refs. [1,2]). Irvine’s work [1] is probably
one of the most important contributions, its main advantage being that only one dimensionless parameter (namely, the
sag-extensibility parameter) is needed to determine cable natural frequencies. Since then, many studies have aimed at
taking into account more complicated mechanics by including bending stiffness [3,4] or nonlinear dynamics effects [5–9]
for instance. However, to the author’s knowledge, the investigation of thermal effects on cable dynamics has surprisingly
not received a similar attention in the literature. The goal of this paper is to extend Irvine’s model to thermally stressed
cables.

One of the motivations is the potential need of adequate models for vibration based methods in structural health
monitoring (SHM). These methods are potentially attractive for tension estimation [10,11] or damage detection [12,13] in
cables, but are likely to suffer a lack of robustness because of environmental temperature change (affecting the initial cable
tension and in turn its modal parameters). It is well-known that differentiating changes due to the environment from
changes due to damage is still a challenging task [14–17]. In addition to SHM, one could also note that temperature changes
may also affect the robustness of vibration control strategies [18,19].

This study focuses on moderate thermal stress typically due to climatic variations. In Section 2, the thermoelastic
equilibrium equations are derived both for cable statics and linear dynamics. A second independent parameter, related
to temperature change, is naturally introduced. Section 3 gives general contour plots of the relative change in
natural frequencies with respect to the only two independent parameters of the problem. Section 4 finally concludes
this paper.
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2. Theory

Fig. 1 depicts the cable profile for its three equilibrium states: the initial static state (without thermal change), the thermally
stressed static state and the superimposed dynamic state. The present study is restricted to small linear superimposed vibrations.

2.1. Statics without thermal stress

We consider a suspended cable anchored on supports at the same level, l being its span. Due to its own weight, the cable
has a sag, denoted d. H is the horizontal component of the external applied tension. t is the tension inside the cable (the
notation T is usually chosen in the literature but, in this paper, it will be kept for temperature). mg is the self-weight of the
cable per unit length. The static equilibrium of the cable is given by [1]

d

ds
tdx

ds

� �
¼ 0;

d

ds
tdz

ds

� �
¼ �mg (1)

yielding

tdx

ds
¼ cst ¼ H; H

d2z

dx2
¼ �mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dz

dx

� �2
s

(2)

where we have used the equality ds=dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=dxÞ2

q
, obtained from the geometric constraint ðdx=dsÞ2 þ ðdz=dsÞ2 ¼ 1.

For small sag (typically, d=lo1=8), one can assume ðdz=dxÞ251 and the static equilibrium equation simplifies into [1]

H
d2z

dx2
¼ �mg (3)

The boundary conditions are

zð0Þ ¼ zðlÞ ¼ 0 (4)

The solution for the cable profile is then

zðxÞ ¼
mgl2

2H

x

l
1�

x

l

� �
(5)

and the sag is

d ¼ zðl=2Þ ¼ mgl2=8H (6)

One must have H4mgl (in order for d=l to be less than 1/8). The cable length is L ¼
R l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=dxÞ2

q
dx, which can be

approximated by a first-order Taylor expansion as

L ¼ l 1þ
m2g2l2

24H2

 !
(7)

2.2. Thermally stressed state

Under thermal stress, an increment h (positive or negative depending on the sign of temperature change) is added to the
initial applied tension H. The static equilibrium now reads

d

ds
ðtþ t0Þ dx

ds
þ

du

ds

� �� �
¼ 0;

d

ds
ðtþ t0Þ dz

ds
þ

dw

ds

� �� �
¼ �mg (8)

where u and w are the additional longitudinal and vertical cable displacement owing to temperature effects. t0 is the
additional tension in the cable. Neglecting u and taking into account Eq. (2), the first equation in (8) becomes

t0 dx

ds
¼ h (9)
Fig. 1. Cable profile for the initial static equilibrium state (thick line), thermally stressed state (thin line) and dynamic state (dashed line). The figure gives

an example for a positive thermal change, corresponding to a decrease in the applied tension at the end and an increase of sag. The dynamic profile here

corresponds to a second symmetric in-plane mode.
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and using the same simplifications as before, Eqs. (8) yield the following equilibrium equation:

ðH þ hÞ
d2

dx2
ðzþwÞ ¼ �mg (10)

with boundary conditions

wð0Þ ¼ wðlÞ ¼ 0 (11)

Taking into account the equilibrium state (3) into (10), integrating and using boundary conditions (11) yields

wðxÞ ¼ �
h

H þ h
zðxÞ (12)

At this stage, h is still unknown and must be evaluated. Denoting DT as the temperature change (assumed uniform
throughout this paper), the generalized Hooke’s law of linear thermoelasticity stipulates that [20]

tþ t0 ¼ EAð�þ �0 � aDTÞ (13)

where t ¼ EA� from the initial equilibrium state (� being the initial strain). E, A and a respectively denote the Young
modulus, the cross-section area and the thermal expansion coefficient. �0 is the additional thermal strain:

�0 ¼
ds02 � ds2

2ds2
(14)

where ds is the original length of the element before temperature change and ds0 is its new length:

ds2 ¼ dx2 þ dz2; ds02 ¼ ðdxþ duÞ2 þ ðdzþ dwÞ2 (15)

Using Eqs. (14), (15), (9), and ignoring the high-order term ðdu=dxÞ2=2, Eq. (13) yields after multiplication by
ðds=dxÞ2:

h

EA

ds

dx

� �3

¼
du

dx
þ

dz

dx

dw

dx
þ

1

2

dw

dx

� �2

� aDT
ds

dx

� �2

(16)

Integrating from 0 to l and by parts the second term of the right hand side gives

hLe

EA
¼ uðlÞ � uð0Þ þ

mg

H

Z l

0
w dxþ

1

2

Z l

0

dw

dx

� �2

dx� aDTLt (17)

where Le ¼
R l

0ðds=dxÞ3 dx and Lt ¼
R l

0ðds=dxÞ2 dx. From ds=dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=dxÞ2

q
, we have (Taylor expansion)

Le ¼ l 1þ
m2g2l2

8H2

 !
; Lt ¼ l 1þ

m2g2l2

12H2

 !
(18)

It might be useful to consider flexible horizontal supports at the ends, simply modelled as linear springs of stiffness k0

and kl:

h ¼ k0uð0Þ; h ¼ �kluðlÞ (19)

Using Eqs. (5), (12) and (19) into (17) finally gives the following equation for the additional tension:

h�3 þ ð2þ yþ l2=24Þh�2 þ ð1þ 2yþ l2=12Þh� þ y ¼ 0 (20)

where h� ¼ h=H, l2
¼ ðmgl=HÞ2l=ðHLe=EeqAeqÞ, y ¼ aDTLt=ðHLe=EeqAeqÞ, and EeqAeq ¼ EA=f1þ ð1=k0 þ 1=klÞEA=Leg. l2 is the

Irvine sag-extensibility parameter. y is a dimensionless parameter related to the temperature change. Note that y ¼ 0 yields
h� ¼ 0. It is emphasized that Eqs. (12) and (20) are equivalent to the result given without proof in Exercise 2.5 of Irvine’s
book [1] (the present form being more compact).

2.3. Free linear vibrations under thermal stress

The dynamic equilibrium of the cable is given by the following equations:

d

ds
ðtþ t0 þ t̃Þ dx

ds
þ

du

ds
þ

dũ

ds

� �� �
¼ m

q2ũ

qt2
(21)

d

ds
ðtþ t0 þ t̃Þdṽ

ds

� �
¼ m

q2ṽ

qt2
(22)

d

ds
ðtþ t0 þ t̃Þ dz

ds
þ

dw

ds
þ

dw̃

ds

� �� �
¼ m

q2w̃

qt2
�mg (23)
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where ũ, ṽ, w̃ are the longitudinal, out-of-plane and vertical dynamic components. t̃ is the additional dynamic tension
inside the cable. We apply the same simplifications as before. The longitudinal component displacement is neglected as in
the previous subsection. The equations are linearized by assuming that superimposed dynamic perturbations are small.
After substituting the equations of static equilibrium, the equations of motion with harmonic time dependence are finally
reduced to

ðH þ hÞ
d2ṽ

dx2
þmo2ṽ ¼ 0 (24)

ðH þ hÞ
d2w̃

dx2
þmo2w̃ ¼

mg

H þ h
h̃ (25)

h̃ is the external dynamic tension. The boundary conditions for the dynamics are given by

ũð0Þ ¼ h̃=k0; ũðlÞ ¼ �h̃=kl; ṽð0Þ ¼ ṽðlÞ ¼ 0; w̃ð0Þ ¼ w̃ðlÞ ¼ 0 (26)

Following the same procedure as in the previous subsection, the application of Hooke’s law yields after linearization the
following equation for h̃:

h̃

EA

ds

dx

� �3

¼
dũ

dx
þ

dz

dx
þ

dw

dx

� �
dw̃

dx
(27)

and after integration

h̃Le

EeqAeq
¼

mg

H þ h

Z l

0
w̃dx (28)

Out-of-plane motion: The eigensolutions of Eq. (24) together with the boundary conditions (26) are straightforward:

O0n ¼ np; ṽnðxÞ ¼ Cn sin
np
l

x (29)

where O ¼ olðH=mÞ�1=2 and O0 ¼ Oð1þ h�Þ�1=2 respectively denote the initial and modified dimensionless angular
frequencies. n is a positive integer.

In-plane motion: For the solutions of Eq. (25) with boundary conditions (26), it is convenient to distinguish symmetric
modes from antisymmetric ones. From Eq. (28), antisymmetric modes do not induce additional dynamic tension (h̃ ¼ 0), so
that their natural frequencies and modeshapes are

O0n ¼ 2np; w̃nðxÞ ¼ An sin
2np

l
x (30)

For the calculation of symmetric modes, one needs to find a peculiar solution of Eq. (25), which can simply be the constant
h̃g=o2ðH þ hÞ. After application of boundary conditions, it can be shown that the general solution for symmetric modes is

w̃nðxÞ ¼
mgl2h̃

ðH þ hÞ2O02n
1� tan

O0n
2

sin
O0nx

l
� cos

O0nx

l

� �
(31)

Using Eq. (31) into (28), we obtained the following transcendental equation for the natural frequencies O0n of symmetric
modes:

tan
O0

2
¼
O0

2
�

4

l02
O0

2

� �3

(32)

with l02 ¼ l2=ð1þ h�Þ3. One remarks that this equation is the same as the well-known transcendental equation of Irvine,
but with differently defined dimensionless parameters O0 and l02 (for h� ¼ 0, Irvine’s equation is exactly recovered).

3. Results

The quantity of interest is the relative change in natural frequency due to temperature for a given cable (fixed l2).
Frequency values without thermal stress are well-known [1]. For clarity, their evolution with respect to the sag-

extensibility parameter is recalled in Fig. 2 (given Eq. (32), this figure also corresponds to the evolution of O0 vs. l02).
Provided that one is interested in relatively low temperature change (typically due to climatic variations), the influence of
temperature on material properties is neglected in the following results (without loss of generality for the proposed
theory).

The only independent parameters of the problem are l2 and y, so that quite general results are obtained through
two-dimensional contour plots of Do=o ¼ f ðl2; yÞ, where Do=o ¼ oðl2; yÞ=oðl2;0Þ � 1 is the relative change in
natural frequency under the influence of temperature. It is intuitively clear that for a fixed temperature change DT , the
ratio H=EA must be low enough in order to have a non-negligible value of y—and hence a non-negligible effect of
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temperature on frequencies. In other words, cables that are strongly pre-tensioned will be less sensitive to temperature
change. In this paper, Eqs. (20) and (32) are solved with a Newton–Raphson algorithm for l2 varying from 1 to 200 and y
varying from �1 to +1.

For out-of-plane and antisymmetric in-plane modes, the relative change in natural frequency is analytically obtained in
terms of h� as

Do=o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

p
� 1 (33)

Fig. 3 gives the contour plots for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

p
� 1 ð�100Þ in terms of y and log l2. For every value of l2, the eigenfrequencies of

such modes decrease as the temperature change increases. One can observe a slightly higher sensitivity to cooling than
heating. However, for fixed values of y, this sensitivity to temperature becomes lower and lower for cables having a larger
and larger value of l2. Note that comparing temperature sensitivity for different values of l2 at fixed y implies that the ratio
between the working stress H=A and Young’s modulus E should remain almost constant. For a given cable material,
comparisons for fixed y are hence indeed made for an almost constant safety factor, which is meaningful.

For symmetric in-plane modes, Eq. (32) must be solved. The effect of temperature on frequencies manifests itself
through a modification of the axial tension (as for out-of-plane and antisymmetric modes) as well as through a sag
modification, yielding a modified parameter l02 as shown by Eq. (32). Fig. 4 plots the relative change of the first symmetric
natural frequency. The thermal behaviour of this mode is strongly dependent on l2 and quite different from Fig. 3. Roughly,
the frequency relative change is rather small above log l2

¼ 4:5 (l2
’ 90). Between 2.5 and 4.5 (l2 between 12 and 90), it is

more pronounced and the frequency is counterintuitively increasing with temperature. As shown later, such increase can
lead to cross-over.

Below log l2
¼ 2:5 (l2

’ 12), the behaviour changes again. For yo0 (cooling), the first frequency is increasing as the
temperature is decreasing. However, for y40 (heating), the modal behaviour is more complex: the frequency might
increase or decrease depending on the value of l2 as well as of y. Note that in certain region, the frequency is not
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Fig. 2. Irvine’s natural frequencies vs. sag-extensibility parameter for the first three symmetric modes (solid lines) and the first two antisymmetric modes

(dashed lines). Out-of-plane modes are not shown.
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Fig. 3. Relative change in natural frequency ð�100Þ for out-of-plane and in-plane antisymmetric modes.
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monotically varying with respect to temperature change, as it is the case for log l2
¼ 2 (l2

’ 7) for instance: the frequency
tends to increase for any negative or positive temperature change.

The fact that the frequency can increase with temperature is explained as follows. A temperature change modifies the
axial tension as well as the cable sag. When the temperature increases, the axial tension always decreases while the sag-to-
span always increases (as shown by Eqs. (12) and (33) together with the results of Fig. 3). A decrease of tension tends to
decrease all natural frequencies, while the increase of sag tends to increase the frequencies of symmetric in-plane
eigenmodes: tension and sag actions have hence a counteracting effect. This can be formally proven from Fig. 2: one has
O0n ¼ f ðl02Þ, where f is a monotically increasing function, which can be rewritten as

On ¼ f
l2

ð1þ h�Þ3

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

p
(34)

Hence when h� is decreasing (increasing temperature), the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

p
decreases while the function f ð�Þ increases: this

means that the decrease of tension can be compensated by the increase of the sag-extensibility parameter. Note that for
taut strings (l2

¼ 0), frequencies are given by On ¼ np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

p
and hence always decrease for positive thermal changes

(their relative change is the same as in Fig. 3).
Figs. 5 and 6 also give the contour plots for the relative change in frequency of the second and third in-plane symmetric

modes. As for the first mode, their thermal behaviour is still significantly different from antisymmetric modes. However,
differences become weaker as the mode order increases and the behaviour tends to become identical to that of
antisymmetric and out-of-plane modes (compare Fig. 6 with Fig. 3).

As a last example, one considers a cable subjected to a temperature change ranging from �40 to þ40 K. The cable
has the following characteristics: l ¼ 200 m, A ¼ 7:069e� 2 m2, E ¼ 2:0eþ 11 Pa, r ¼ 7800 kg m�3, a ¼ 1:2e� 5 K�1,
g ¼ 9:81 m s�2. The initial applied tension is H ¼ 0:938eþ 7 N so that l2

¼ 20:01 and y ranges from �0:723 to þ0:723.
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Fig. 7. Natural frequencies vs. temperature change for the first three symmetric modes (solid lines) and the first two antisymmetric modes (dashed lines).

Out-of-plane modes not shown for clarity. Insets: first symmetric modeshapes for �40, 0 and þ40 K. �-mark: finite element solution.
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Horizontal supports are supposed to have infinite stiffness. Fig. 7 exhibits the evolution of the first in-plane
eigenfrequencies vs. temperature change. Excepted the first one, all natural frequencies are decreased with heating. The
frequency relative change for the first and second symmetric modes respectively varies from �7:0 to þ11:6 percent and
þ15:2 to �9:5 percent, while it varies from þ16:1 to �11:3 percent for antisymmetric modes (these values can be also
directly found from Figs. 3–5). Also sketched in Fig. 7, the evolution of the first modeshape appears to be significant. Indeed,
one cross-over between the first symmetric and antisymmetric modes occurs near þ40 K. This due to the fact that for DT

varying from �40 to þ40 K, the modified Irvine parameter l02 ranges from 8.17 to 40.97, which is greater than the well-
known cross-over value of 4p2. In the present example, it should be noticed that cable end supports were supposed to have
infinite stiffness and to remain fixed with respect to temperature, which maximizes thermal effects. In real situations, the
behaviour of end supports is more complicated and usually depends on the thermomechanical behaviour of the cable
structure as a whole.

In order to check the validity of the above results, a comparison with finite element solutions is finally performed
(see Fig. 7 also). Finite element solutions have been obtained from a planar Euler–Bernoulli beam model developed by
the author in Ref. [21] for studying the effect upon vibrations of thermal stress including initial bend. The beam has
been discretized into 100 elements. Simple supports have been used as well as a negligible bending stiffness

(I ¼ 5:8908e� 5 m4, yielding a high bending stiffness parameter [3,4] x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hl2=EI

q
¼ 178). As can be observed in Fig. 7,

results obtained with the proposed cable model are in quite good agreement with numerical results.

4. Conclusion

In this paper, the analytical model of Irvine has been extended to thermoelasticity. The effect of thermal stress typically
due to climatic change on cable free vibrations has been investigated. Some general two-dimensional contour plots have
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been presented for the relative change in natural frequencies due to temperature with respect to the only two independent
parameters of the problem. Depending on the values of l2 and y, thermal stress is likely to have a quite significant effect on
natural frequencies as well as modeshapes. For in-plane symmetric modes, it has been shown that a positive (resp.
negative) temperature change does not necessarily decrease (resp. increase) natural frequencies and that thermoelastic
effects can produce sag modifications that can lead to cross-over. As a consequence, the thermoelastic behaviour of cables
is likely to affect the robustness of vibration based methods in SHM. Future studies should deal with the influence of
bending stiffness, which cannot generally be neglected for higher-order modes or large-diameter cables.
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